4.7 Article

Characterization of personal solar ultraviolet radiation exposure using detrended fluctuation analysis

Journal

ENVIRONMENTAL RESEARCH
Volume 182, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2019.108976

Keywords

Solar ultraviolet radiation exposure; Personal dosimetry; Statistical analysis; Environmental health

Funding

  1. South African Medical Research Council
  2. National Research Foundation of South Africa
  3. European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant [701785]
  4. Marie Curie Actions (MSCA) [701785] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Studies of personal solar ultraviolet radiation (pUVR) exposure are important to identify populations at-risk of excess and insufficient exposure given the negative and positive health impacts, respectively, of time spent in the sun. Electronic UVR dosimeters measure personal solar UVR exposure at high frequency intervals generating large datasets. Sophisticated methods are needed to analyze these data. Previously, wavelet transform (WT) analysis was applied to high-frequency personal recordings collected by electronic UVR dosimeters. Those findings showed scaling behavior in the datasets that changed from uncorrelated to long-range correlated with increasing duration of time spent in the sun. We hypothesized that the WT slope would be influenced by the duration of time that a person spends in continuum outside. In this study, we address this hypothesis by using an experimental study approach. We aimed to corroborate this hypothesis and to characterize the extent and nature of influence time a person spends outside has on the shape of statistical functions that we used to analyze individual UVR exposure patterns. Detrended fluctuation analysis (DFA) was applied to personal sun exposure data. We analyzed sun exposure recordings from skiers (on snow) and hikers in Europe, golfers in New Zealand and outdoor workers in South Africa. Results confirmed validity of the DFA superposition rule for assessment of pUVR data and showed that pUVR scaling is determined by personal patterns of exposure on lower scales. We also showed that this dominance ends at the range of time scales comparable to the maximal duration of continuous exposure to solar UVR during the day; in this way the superposition rule can be used to quantify behavioral patterns, particularly accurate if it is determined on WT curves. These findings confirm a novel way in which large datasets of personal UVR data may be analyzed to inform messaging regarding safe sun exposure for human health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available