4.7 Article

Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties

Journal

ENVIRONMENTAL POLLUTION
Volume 258, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113740

Keywords

Caenorhabditis elegans; Microplastic; Nanoplastic; Soil texture; Toxicity values

Funding

  1. Konkuk University

Ask authors/readers for more resources

Plastic polymers are widely used in various applications and are thus prevalent in the environment. Over time, these polymers are slowly degraded into nano- and micro-scale particles. In this study, the free-living nematode, Caenorhabditis elegans, was exposed to polystyrene particles of two different sizes (42 and 530 nm) in both liquid and soil media. The number of offspring significantly (p < 0.05) decreased at polystyrene concentrations of 100 mg/L and 10 mg/kg in liquid and soil media, respectively. In soil media, but not liquid media, C. elegans was more sensitive to the larger particles (530 nm) than the smaller particles (42 nm), and the median effective concentration (EC50) values of the 42 and 530 nmsized particles were found to be > 100 and 14.23 (8.91-22.72) mg/kg, respectively. We performed the same toxicity bioassay on five different field-soil samples with different physicochemical properties and found that the size-dependent effects were intensified in clay-rich soil samples. A principal component analysis showed that the bulk density, cation exchange capacity, clay content, and sand content were the dominant factors influencing the toxicity of the 530 nm-sized polystyrene particles. Therefore, we conclude that the soil composition has a significant effect on the toxicity induced by these 530 nm-sized polystyrene particles. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available