4.7 Article

Wetland soil microplastics are negatively related to vegetation cover and stem density

Journal

ENVIRONMENTAL POLLUTION
Volume 256, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113391

Keywords

Microplastic; Microfiber; Wetland soil; Spatial variation; Vegetation

Funding

  1. USDA National Institute of Food and Agriculture [1013805]

Ask authors/readers for more resources

Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 +/- 2,500 m(-2) or 1,270 +/- 150 kg(-1) ) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available