4.7 Article

Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation

Journal

ENVIRONMENTAL POLLUTION
Volume 256, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113417

Keywords

Metal organic framework; ZnS; Hexavalent chromium; Organic pollutants; Photocatalysis

Funding

  1. National Natural Science Foundation of China [51878023, 51578034]
  2. Great Wall Scholars Training Program Project of Beijing Municipality Universities [CITTCD20180323]
  3. Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality [IDHT20170508]
  4. Beijing Talent Project [2018A35]

Ask authors/readers for more resources

A facile method was developed to fabricate porous tube-like ZnS by sulfurizing rod-like ZIF-L with thioacetamide (TAA) at different durations and the formation mechanism of the porous tube-like ZnS was discussed in detail. The series of sulfide products (ZS-X) were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance spectroscopy (SSNMR), transmission electron microscopy (TEM), UV-visible diffuse-reflectance spectroscopy (UV-vis DRS). The photocatalytic performances of ZS-X toward Cr(VI) reduction and organic pollutant degradation were explored. It was discovered that ZS-3 (porous tube-like ZnS) exhibited excellent activities under UV light and displayed good reusability and stability after several experimental cycles. In addition, Cr(VI) reduction and organic pollutant degradation were investigated under different pH values and existence of different foreign ions. The photocatalytic activities of ZS-3 were tested toward the matrix of Cr(VI) and reactive red X-3B. The mechanism was proposed and verified by both electrochemical analysis and electron spin resonance (ESR) measurement. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available