4.8 Review

Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review

Journal

ENVIRONMENT INTERNATIONAL
Volume 133, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.105141

Keywords

Sulfate radical-based advanced oxidation processes; Mn-based catalysts; Peroxymonosulfate; Persulfate; Contaminant oxidation; Crystallinity

Funding

  1. U.S. National Science Foundation [CBET-1762691, CHE-1808406]

Ask authors/readers for more resources

Sulfate radical-based advanced oxidation processes (AOPs) have drawn increasing attention during the past two decades, and Mn-based materials have been proven to be effective catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS) to degrade many contaminants. This article presents a comprehensive review of various Mn-based materials to activate PMS and PDS. The activation mechanisms of different Mn-based catalysts (i.e., Mn oxides MnOx, MnOx hybrids, and MnOx-carbonaceous material composites) were first summarized and discussed in detail. Besides the commonly reported free radicals (SO4-center dot and (OH)-O-center dot), non-radical mechanisms such as singlet oxygen and direct electron transfer have also been discovered for selected materials. The effects of pH, inorganic ions, natural organic matter (NOM), dissolved oxygen content, temperature, and the crystallinity of the materials on the catalytic reactivity were also discussed. Then, important instrumentations and technologies employed to characterize Mn-based materials and to understand the reaction mechanisms were concisely summarized. Three common overlooks in the experimental designs for examining the PMS/PDS-MnOx systems were also discussed. Finally, future research directions were suggested to further improve the technology and to provide a guidance to develop cost-effective Mn-based materials to activate PMS/PDS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available