4.8 Article

Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities

Journal

ENVIRONMENT INTERNATIONAL
Volume 133, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.105145

Keywords

PM2.5 concentrations; Environmental Kuznets curve; Socioeconomic factors; Spatial autocorrelation

Funding

  1. National Natural Science Foundation of China [41590841, 31570699, 41771201]
  2. National Key Research and Development Program, Ministry of Science and Technology of the People's Republic of China [2016YFC0503004]
  3. Key Research Program of Frontier Sciences, Chinese Academy of Sciences [QYZDB-SSW-DQC034]
  4. One Hundred Talents program, Chinese Academy of Sciences [29BR2013002]

Ask authors/readers for more resources

The air quality issues caused by extreme haze episodes in China have become increasingly serious in recent years. In particular, fine particulate matter (PM2.5) has become the major component of haze with many adverse impacts and has therefore become of great concern to scientists, government, and the general public in China. This study investigates the spatiotemporal variation in PM2.5 in 269 Chinese cities from 2015 to 2016 and its associations with socioeconomic factors to identify the possible strategies for PM2.5 pollution mitigation. Specifically, we first quantified the spatial pattern of PM2.5 concentrations in both 2015 and 2016, and then changes between the two years. Next, we examined the relationship between socioeconomic factors and PM2.5 concentrations and changes. The results showed that most cities in eastern China experienced decreases in PM2.5 concentration, although most of these cities already had high PM2.5 pollution level. Cities with low PM2.5 concentrations experienced increases in PM2.5 concentrations and were mostly located in southern and southwestern China. The PM2.5 concentration was the highest in winter, followed by in spring, autumn and summer; for changes in PM2.5 concentrations, the highest magnitude of decrease occurred in summer, followed by the decreases in winter, autumn and spring. Cities with high PM2.5 concentrations tended to be clustered, but the clustered characteristics were not clearly related to the changes in PM2.5 concentrations. The relationship between PM2.5 concentration and urban size was an inverse U-shaped curve, suggesting the existence of the Environmental Kuznets Curve for air quality in China. Population density and secondary industry share are the keys factors relating to air pollution control. In comparison to other cities, most moderately developed cities had a greater magnitude of decrease in PM2.5 concentrations and the key factor for pollution improvement was industrial structure; however, smaller cities tended to have a greater increase in PM2.5 concentrations and population density was the most important influencing factor. As a result, for air pollution control in China, specific regulations should be carried out according to different regions and different developmental stages based on the locations of cities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available