4.8 Article

Characterization of implementation limits and identification of optimization strategies for sustainable water resource recovery through life cycle impact analysis

Journal

ENVIRONMENT INTERNATIONAL
Volume 133, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.105266

Keywords

Resource recovery; Wastewater reclamation; Agricultural irrigation; Life cycle impact analysis; Optimization strategy; Environmental sustainability

Funding

  1. Beijing Talents Foundation, China [2017000021223ZK07]
  2. Beijing Nova Program, China [Z171100001117078]
  3. National Natural Science Foundation of China [51922013]
  4. Youth Innovation Promotion Association of the Chinese Academy of Sciences, China [2016041]
  5. Royal Society Newton International Fellowship, UK [NF160404]

Ask authors/readers for more resources

How we manage alternative freshwater resources to close the gap between water supply and demand is pivotal to the future of the environment and human well-being. Increased scarcity of water for agricultural irrigation in semi-arid and arid regions has resulted in a growing interest in water reuse practices. However, insight into the life cycle impacts and potential trade-offs of these emerging practices are still limited by the paucity of systematic evaluations of different water reuse implementations. In this study, a host of environmental and human health impacts at three implementation levels of allowing water reclamation for crop irrigation was comparatively evaluated across the operational landscape via a combination of scenario modelling, life-cycle impact analyses and Monte Carlo simulations. Net harvesting of reclaimed water for irrigation was found to be dependent upon the sophistication of the treatment processes, since multistage and complex configurations can cause greater direct water consumption during processing. Further, the direct benefits of water resource recovery can be essentially offset by indirect adverse impacts, such as mineral depletion, global warming, ozone depletion, ecotoxicity, and human health risks, which are associated with increased usage of energy and chemicals for rigorous removal of contaminants, such as heavy metals and contaminants of emerging concern. Nonetheless, expanded simulations suggest the significance of concurrently implementing energy recovery, nutrient recycling, and/or nature-based, chemical-free water technologies to reduce the magnitude of negative impacts from engineered water reclamation processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available