4.7 Article

Effect of excavation stress condition on hydraulic fracture behaviour

Journal

ENGINEERING FRACTURE MECHANICS
Volume 226, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2020.106871

Keywords

Underground excavation; Excavation stress redistribution; Hydraulic fracturing; Fracture path

Categories

Funding

  1. National Natural Science Foundation of China [41630642]

Ask authors/readers for more resources

The fracture behaviour of single- and multi-stage hydraulic fracturing (HF) under varying excavation stress conditions was studied using a flow-coupled discrete element method (DEM). Conventional HF theories and analytical solutions for excavation stress redistribution are used to verify the numerical model. The numerical simulation results indicated that for the single-stage HF, both the in situ stresses and injection location have major influences on the HF propagation path, caused by the redistributions of the local maximum and minimum principal stresses under excavation conditions. Fractures generally propagate perpendicular to the local minimum principal stress (sigma(min)) and also propagate preferentially towards the area with lower sigma(min). Hydraulic fractures propagation is dominated by tensile failure, and the generation of fracture branches is disfavored because of the high local compressive stress field induced by the HF process itself. As for multi-stage HF, different excavation stress conditions may cause different fracture development performances because of alterations of the preferred fracture orientation, blunting of propagating fractures, or creating a more complex fracture geometry in the affected zone. Therefore, when using high-pressure HF for preconditioning the rock mass to assist mechanical excavation in hard rock mining, performance can be enhanced by understanding the impact of stress changes and careful selection of appropriate HF methods depending on the in situ stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available