4.7 Article

Nudging the adaptive thermal comfort model

Journal

ENERGY AND BUILDINGS
Volume 206, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2019.109559

Keywords

Adaptive thermal comfort; HVAC; Mixed-mode; Natural ventilation; Energy; Standards; Climate

Funding

  1. Republic of Singapore's National Research Foundation Singapore

Ask authors/readers for more resources

The recent release of the largest database of thermal comfort field studies (ASHRAE Global Thermal Comfort Database II) presents an opportunity to perform a quality assurance exercise on the first generation adaptive comfort standards (ASHRAE 55 and EN15251). The analytical procedure used to develop the ASHRAE 55 adaptive standard was replicated on 60,321 comfort questionnaire records with accompanying measurement data. Results validated the standard's current adaptive comfort model for naturally ventilated buildings, while suggesting several potential nudges relating to the adaptive comfort standards, adaptive comfort theory, and building operational strategies. Adaptive comfort effects were observed in all regions represented in the new global database, but the neutral (comfort) temperatures in the Asian subset trended 1-2 degrees C higher than in Western countries. Moreover, sufficient data allowed the development of an adaptive model for mixed-mode buildings that closely aligned to the naturally ventilated counterpart. We present evidence that adaptive comfort processes are relevant to the occupants of all buildings, including those that are air conditioned, as the thermal environmental exposures driving adaptation occur indoors where we spend most of our time. This suggests significant opportunity to transition air conditioning practice into the adaptive framework by programming synoptic- and seasonal-scale set-point nudging into building automation systems. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available