4.7 Article

Gas turbine performance prediction via machine learning

Journal

ENERGY
Volume 192, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116627

Keywords

Gas turbine; Surrogate models; Machine learning; Performance prediction; Correction curves; Simulation

Funding

  1. National University of Singapore [R261-508-001-646/733]

Ask authors/readers for more resources

This paper develops a machine learning-based method to predict gas turbine performance for power generation. Two surrogate models based on high dimensional model representation (HDMR) and artificial neural network (ANN) are developed from real operational data to predict the operating characteristics of air compressor and turbine. Both models capture the operating characteristics well with average errors of less than 1.0%. Moreover, four more holistic models are developed to capture gas turbine part-load and full-load performance. The models for air compressor and turbine are then embedded into a gas turbine simulation program, and all surrogate models are validated using a separate data set. It is shown that the power output, pressure ratio, fuel flow, and turbine exhaust temperature from these models match their measured values well with average and maximum errors of less than 2.0% and 4.3%, respectively. Since holistic ANN models have lower complexity and higher accuracy, the ANN model for predicting full-load performance is used to construct gas turbine performance correction curves. The correction curves along with the ANN model for predicting part-load performance offer an excellent basis for continuous health monitoring and fault diagnosis. The proposed methodology is applicable to any gas turbines and can help power plants to study and quantify performance degradation over time. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available