4.7 Article

Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state

Journal

ENERGY
Volume 189, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116286

Keywords

DFT; Nearby group; Ground state; Excited state

Funding

  1. National Natural Science Foundation of China [51806140, 51776123, 51876124]

Ask authors/readers for more resources

A fundamental understanding of the reduction reactions from solid char(N) is proposed with the aim of providing useful information to aid in minimising NOx emission. The direct reduction with (a) nearby radical; (b) nearby oxygen and (c) nearby vacancy is calculated. The results show that the nearby oxygen will increase the activation energy by 51.8 kJ/mol and the nearby vacancy will reduce the exothermicity by 269.7 This leads us to the firm conclusion that the nearby radical site will provide a favorable route. The indirect reduction reactions from surface migration are also determined. According to the calculated results, the high-spin singlet reactions are more complicated than the low-spin triplet reactions. The barrier height involved in the singlet reactions is much lower than that encountered in the triplet reactions, indicating that the reaction with singlets holds potential of being an important channel for N-2 production. Our qualitative analysis of the density functional theory (DFT) results confirms that the high-spin excited-state changing the electronic properties of the carbonaceous surface is much more favorable for the reduction than the low-spin ground-state. Much more emphasis therefore should be placed on the high-spin states during the mechanism study of the heterogeneous reactions. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available