4.6 Article

Excellent performance of flexible supercapacitor based on the ternary composites of reduced graphene oxide/molybdenum disulfide/poly (3,4-ethylenedioxythiophene)

Journal

ELECTROCHIMICA ACTA
Volume 330, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135205

Keywords

Ternary nanocompo site; Porous folded structure; Flexible supercapacitors; Energy applications

Funding

  1. National Natural Science Foundation of China (NSFC) [51707015, 61701050]
  2. Scientific Research Fund of Sichuan Provincial Education Department [2018ZA0106, 2018Z073]
  3. Sichuan Province Practice and Innovation Training Programfor College Students [201810621178, D1910621163]
  4. Scientific Research Foundation of CUIT [KYTZ201702, KYTZ201704]

Ask authors/readers for more resources

Rational design of electrode materials and facile synthetic process are essential for developing high performance energy storage devices. Here, a novel reduced graphene oxide/molybdenum disulfide/poly (3,4-ethylenedioxythiophene) ternary material is constructed and deposited on carbon fiber cloth by a facile hydrothermal polymerization method. Thereinto, the graphene oxide is directly used as an oxidant to initiate the polymerization of 3,4-ethylenedioxythiophene. Meanwhile, graphene oxide is transformed into reduced graphene oxide subsequently. This unique ternary flexible electrode exhibits a remarkable areal capacitance of 241.81 mF/cm(2) at a current density of 0.5 mA/cm(2) as well as good stability with 93.7% capacitance retention after 5000 cycles. The excellent electrochemical properties can be attributed to the profitable synergistic effect among three components. Reduced graphene oxide as a framework provides improved electrical conductivity network. Molybdenum disulfide and poly (3,4-ethylenedioxythiophene) afford large pseudocapacitance. Moreover, the ternary electrode possesses porous folded structures which can reinforce the electronic/ionic transport and result in the conspicuous increase in areal capacitance. In addition, the assembled fabric micro-supercapacitor based on the ternary electrodes delivers a superior energy density of 1.44 mu Wh/cm(2) at a power density of 0.058 mw/cm(2). This as-prepared device with excellent flexibility and favorable capacitive performance demonstrates a promising wearable energy storage device. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available