4.6 Article

Novel hierarchical sea urchin-like Prussian blue@palladium core-shell heterostructures supported on nitrogen-doped reduced graphene oxide: Facile synthesis and excellent guanine sensing performance

Journal

ELECTROCHIMICA ACTA
Volume 330, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135196

Keywords

Prussian blue; Palladium; Morphology-controlled synthesis; Electrochemical detection; Guanine

Funding

  1. National Natural Science Foundation of China [21505035, 51874359, 21171174, 21472038, 21603065]
  2. Provincial Natural Science Foundation of Hunan [2016JJ3028, 2017JJ2007]
  3. Scientific Research Projects of Education Department of Hunan Province [18A336]
  4. Hunan Provincial Science and Technology Plan Project [2016TP1007]

Ask authors/readers for more resources

Aiming at substantially improving the electrochemical sensing performance for guanine, we bring out a novel high-efficiency electrocatalyst composed of hierarchical sea urchin-like Prussian blue@palladium core-shell heterostructures supported on nitrogen-doped reduced graphene oxide (PB-U@Pd/N-RGO). The said PB-U@Pd/N-RGO was synthesized by a new and facile wet-chemistry method without using any surfactant and template. More impressively, we demonstrate a new strategy for morphology-controlled synthesis of Prussian blue via simply tuning the ratio of N,N'-dimethyl formamide and H2O in the mixed solvent. In-depth electrochemical characterizations demonstrate the superior electrocatalytic performance of PB-U@Pd/N-RGO toward the oxidation of guanine, which benefits from the synergistic effect of component materials and its unique core-shell heterostructure. Consequently, the constructed PBU@Pd/N-RGO-based electrochemical sensor displays superb comprehensive performance for the guanine assay. To be specifical, the developed sensor exhibits wide detection range (0.01-85.0 mu W), low detection limit (2.6 nM), good reproducibility, long-term stability, high sensitivity and selectivity together with acceptable recovery (97.0-104.0%) for the assay of guanine in biological samples. Such outstanding comprehensive performance is amongst the top of reports for the electrochemical sensing of guanine, promising practical applications in biosensing fields. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available