4.6 Article

How cations determine the interfacial potential profile: Relevance for the CO2 reduction reaction

Journal

ELECTROCHIMICA ACTA
Volume 327, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135055

Keywords

Double-layer structure; Cation effects; CO2 reduction reaction; Adsorbed CO; Vibrational Stark effect

Funding

  1. Leverhulme Trust [RPG-2015-040]
  2. Universities UK international (UUKi) [RF-2018-79]
  3. Department for Business, Energy & Industrial Strategy (BEIS)
  4. National Natural Science Foundation of China [2181101075, 21621091]
  5. China Postdoctoral Science Foundation [2018M642563]

Ask authors/readers for more resources

The strong effect of the electrolyte cation on the activity and selectivity of the CO2 reduction reaction (CO2RR) can only be understood and controlled if the cation's effect on the interfacial potential distribution is known. Using CO (the key intermediate in the CO2RR) adsorbed on Pt as a probe molecule, and combining IR spectroscopy, capacitance measurements and ab initio molecular dynamics, we show that the cation size determines the location of the outer Helmholtz plane, whereby smaller cations increase not just the polarisation but, most importantly, the polarizability of adsorbed CO (COad) and the accumulation of electronic density on the oxygen atom of COad. This strongly affects its adsorption energy, the degree of hydrogen bonding of interfacial water to COad and the degree of polarisation of water molecules in the cation's solvation shell, all of which can deeply affect the subsequent steps of the CO2RR. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available