4.1 Article

Enhancement of sialylation in rIgG in glyco-engineered Chinese hamster ovary cells

Journal

CYTOTECHNOLOGY
Volume 72, Issue 3, Pages 343-355

Publisher

SPRINGER
DOI: 10.1007/s10616-020-00381-z

Keywords

Chinese hamster ovary (CHO) cell; IgG; Antibody; Glycosylation; Sialyltransferase; UDP-GlcNAc 2-epimerase; ManNAc kinase

Funding

  1. Japan Agency for Medical Research and Development

Ask authors/readers for more resources

Since about 70% of commercial biopharmaceutical products have been produced in Chinese hamster ovary (CHO) cells, this cell line is undeniably a workhorse for biopharmaceuticals production. Meanwhile, sialic acid terminals were reported to affect anti-inflammatory activity, antibody-dependent cellular cytotoxicity efficacy of IgG antibodies. Taking these findings together, we aimed to establish CHO cell lines that highly produce sialic acid terminals by overexpressing two N-acetylneuraminic acid-based key enzymes, alpha(2,6)-sialyltransferase and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase using dihydrofolate reductase/methotrexate gene amplification method. Indeed, the number of total sialic acid terminal glycan structures increased tremendously, by 12-fold compared to the wild type in total protein extracts. With the methotrexate supplementation, a targeted cell line, CHOmt17-100, showed up to 1.4 times more sialylated structures of glycoforms in total proteins. Interestingly, immunoglobulin G, used as the model protein in CHOmt17-100, showed about 53% sialylated structures in its glycoforms. These resultant sialylated glycans exhibited more than approximately 14.5 times increase as compared to that of the wild type. Moreover, the resultant glycan structures mostly had N-acetylneuraminic acid terminals, while N-glycolylneuraminic acid terminal composition remained less than 5% as compared to the wild type. Engineered antibodies derived from CHO cell lines that produce high levels of sialic acid will contribute to the examination of glycoforms' efficacy and usefulness toward bio-better products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available