4.7 Article

Behavior of circular ice-filled self-luminous FRP tubular stub columns under axial compression

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 232, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2019.117287

Keywords

Ice; Fiber-reinforced polymer (FRP); Axial compression; Self-luminance; Composite column

Funding

  1. National Key RAMP
  2. D Program of China [2017YFC0703000]
  3. National Natural Science Foundation of China [51778102, 51978126]
  4. Fundamental Research Funds for the Central Universities of China [DUT18LK35]
  5. Natural Science Foundation of Liaoning Province of China [20180550763]

Ask authors/readers for more resources

This paper proposes an innovative ice-filled self-luminous fiber-reinforced polymer (FRP) tubular (IFSFT) column for temporary structures in cold regions. The proposed column possesses a good combination of the advantages of FRP tube and natural ice, as well as provides itself with aesthetic features or other service functions due to the self-luminous feature of the outer FRP tube in darkness. This paper presents an experimental study on tensile and luminance properties of FRP laminates modified with self-luminous powders, and axial compressive behavior of circular IFSFT stub columns and ice-filled FRP tubular (IFFT) stub columns. Experimental results indicate that the addition of self-luminous powders into FRP composites has little influence on their tensile properties as well as axial compressive behavior of IFSFT stub columns. Compressive strength, peak strain and elastic modulus of the confined ice cores in IFFT and IFSFT specimens have been significantly improved compared with those of unconfined plain ice. A simplified equation for evaluating axial bearing capacity of IFFT and IFSFT stub columns is proposed with a reasonable accuracy. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available