4.7 Article

Effect of TiO2 and fly ash on photocatalytic NOx abatement of engineered cementitious composites

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 236, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2019.117559

Keywords

Titanium dioxide (TiO2); Air purifying; Engineered Cementitious Composites (ECC); Fly ash; Nitrogen oxides (NOx) abatement; Photocatalytic

Funding

  1. National Natural Science Foundation of China [51608382]
  2. Natural Science Foundation of Shanghai of China [17ZR1442000]
  3. James R. Rice Distinguished University Professorship of Engineering at the University of Michigan

Ask authors/readers for more resources

Titanium dioxide (TiO2) nanoparticles have been incorporated in cementitious composites to achieve photocatalytic (PC) functions such as self-cleaning and air purifying functions. This study experimentally investigates the effect of TiO2 nanoparticles and fly ash on the nitrogen oxides (NOx) abatement rate and efficiency of Engineered Cementitious Composites (ECC) that has retained strain-hardening properties and tensile ductility. Emphasis is placed on understanding the fundamental mechanisms through research on the microstructures and chemical environment of the composite material. A first-order chemical reaction model is applied to analyze the PC reaction rate and residual NOx concentration. Test results indicate that the PC reaction rate and efficiency increase with the TiO2 content from 0 to 5%, and the fly ash to cement ratio from 0 to 2.2. Using the low-calcium fly ash further increases the PC reaction rate and efficiency. The microstructure change originated from different fly ash contents and types are closely related to PC efficiency changes. This study advances the fundamental knowledge for engineering the cementitious composites to achieve the optimal PC functions. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available