4.7 Article

Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice

Related references

Note: Only part of the references are listed.
Article Biochemistry & Molecular Biology

Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss

Jelena Scekic-Zahirovic et al.

EMBO JOURNAL (2016)

Article Multidisciplinary Sciences

ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

Aarti Sharma et al.

NATURE COMMUNICATIONS (2016)

Article Multidisciplinary Sciences

The C9orf72 repeat expansion disrupts nucleocytoplasmic transport

Ke Zhang et al.

NATURE (2015)

Article Multidisciplinary Sciences

GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport

Brian D. Freibaum et al.

NATURE (2015)

Article Neurosciences

Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS

Mercedes Prudencio et al.

NATURE NEUROSCIENCE (2015)

Article Multidisciplinary Sciences

FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization

Tsuyoshi Udagawa et al.

NATURE COMMUNICATIONS (2015)

Article Neurosciences

FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis

Yoshihiro Kino et al.

ACTA NEUROPATHOLOGICA COMMUNICATIONS (2015)

Article Medicine, Research & Experimental

ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects

Haiyan Qiu et al.

JOURNAL OF CLINICAL INVESTIGATION (2014)

Article Medicine, Research & Experimental

Spliceosome integrity is defective in the motor neuron diseases ALS and SMA

Hitomi Tsuiji et al.

EMBO MOLECULAR MEDICINE (2013)

Article Biochemistry & Molecular Biology

Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis

Tomohiko Ishihara et al.

HUMAN MOLECULAR GENETICS (2013)

Article Biochemistry & Molecular Biology

ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN

Ewout J. N. Groen et al.

HUMAN MOLECULAR GENETICS (2013)

Article Biochemistry & Molecular Biology

ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules

Caroline Vance et al.

HUMAN MOLECULAR GENETICS (2013)

Article Genetics & Heredity

Exome Sequencing Identifies FUS Mutations as a Cause of Essential Tremor

Nancy D. Merner et al.

AMERICAN JOURNAL OF HUMAN GENETICS (2012)

Article Biochemistry & Molecular Biology

Loss of fused in sarcoma (FUS) promotes pathological Tau splicing

Denise Orozco et al.

EMBO REPORTS (2012)

Article Biochemistry & Molecular Biology

Characterization of inclusion bodies with cytoprotective properties formed by seipinopathy-linked mutant seipin

Daisuke Ito et al.

HUMAN MOLECULAR GENETICS (2012)

Article Neurosciences

Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs

Clotilde Lagier-Tourenne et al.

NATURE NEUROSCIENCE (2012)

Article Cell Biology

FUS-SMN Protein Interactions Link the Motor Neuron Diseases ALS and SMA

Tomohiro Yamazaki et al.

CELL REPORTS (2012)

Article Clinical Neurology

Nuclear Transport Impairment of Amyotrophic Lateral Sclerosis-Linked Mutations in FUS/TLS

Daisuke Ito et al.

ANNALS OF NEUROLOGY (2011)

Article Biochemistry & Molecular Biology

ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import

Dorothee Dormann et al.

EMBO JOURNAL (2010)

Article Biochemistry & Molecular Biology

Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules

Daryl A. Bosco et al.

HUMAN MOLECULAR GENETICS (2010)

Review Biochemistry & Molecular Biology

TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration

Clotilde Lagier-Tourenne et al.

HUMAN MOLECULAR GENETICS (2010)

Article Biochemistry & Molecular Biology

Characterization of Alternative Isoforms and Inclusion Body of the TAR DNA-binding Protein-43

Yoshinori Nishimoto et al.

JOURNAL OF BIOLOGICAL CHEMISTRY (2010)

Article Multidisciplinary Sciences

Deficits in axonal transport precede ALS symptoms in vivo

Lynsey G. Bilsland et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2010)

Article Multidisciplinary Sciences

TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration

Hans Wils et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2010)

Article Clinical Neurology

Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease

Manuela Neumann et al.

ACTA NEUROPATHOLOGICA (2009)

Article Clinical Neurology

A new subtype of frontotemporal lobar degeneration with FUS pathology

Manuela Neumann et al.

BRAIN (2009)

Review Neurosciences

ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis

Kohsuke Kanekura et al.

MOLECULAR NEUROBIOLOGY (2009)

Article Multidisciplinary Sciences

Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis

T. J. Kwiatkowski et al.

SCIENCE (2009)

Review Neurosciences

Role of axonal transport in neurodegenerative diseases

Kurt J. De Vos et al.

ANNUAL REVIEW OF NEUROSCIENCE (2008)

Article Multidisciplinary Sciences

TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis

Jemeen Sreedharan et al.

SCIENCE (2008)

Article Biochemistry & Molecular Biology

TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis

Tetsuaki Arai et al.

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS (2006)

Article Multidisciplinary Sciences

Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis

Manuela Neumann et al.

SCIENCE (2006)

Article Multidisciplinary Sciences

Mutations in dynein link motor neuron degeneration to defects in retrograde transport

M Hafezparast et al.

SCIENCE (2003)