4.7 Article

Micromechanical modelling of syntactic foam

Journal

COMPOSITES PART B-ENGINEERING
Volume 183, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.107701

Keywords

Syntactic foam; Numerical modelling; Micromechanics

Funding

  1. Marie Curie Actions under the Society & Enterprise Fellowship scheme
  2. Innovate UK under the Knowledge Transfer Partnership scheme [KTP0009933]

Ask authors/readers for more resources

A combined numerical-experimental method that enables accurate prediction of not only the elastic moduli and tensile failure strengths of syntactic foams, but also accounts for the experimentally observed scatter in these measurements is presented. In general, for the systems studied, an increase in microsphere content resulted in an increase in tensile modulus and a decrease in tensile strength. At low particle loading ratios, the variance in the measured experimental strength can be almost entirely attributed to the distribution of inter-particle distances between the microspheres, whilst at high particle loadings, geometric variance in the microstructure is shown to be only partially responsible for the observed scatter in strength data. Thus, for the first time, a direct link between the underlying microstructure and the experimentally observed scatter in fracture strength is drawn and substantiated with modelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available