4.7 Article

Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites

Journal

COMPOSITES PART B-ENGINEERING
Volume 178, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.107506

Keywords

Graphene; Elastomers; Mechanical percolation; Micromechanics; Nanocomposites

Funding

  1. European Union's Horizon 2020 research and innovation programme [785219]
  2. China Scholarship Council
  3. EPSRC [EP/K005014/1] Funding Source: UKRI

Ask authors/readers for more resources

Graphene is considered an ideal filler for the production of multifunctional nanocomposites; as a result, considerable efforts have been focused on the evaluation and modelling of its reinforcement characteristics. In this work, we modelled successfully the mechanical percolation phenomenon, observed on a thermoplastic elastomer (TPE) reinforced by graphene nanoplatelets (GNPs), by designing a new set of equations for filler contents below and above the percolation threshold volume fraction (V-p). The proposed micromechanical model is based on a combination of the well-established shear-lag theory and the rule-of-mixtures and was introduced to analyse the different stages and mechanisms of mechanical reinforcement. It was found that when the GNPs content is below V-p, reinforcement originates from the inherent ability of individual GNPs flakes to transfer stress efficiently. Furthermore, at higher filler contents and above V-p, the nanocomposite materials displayed accelerated stiffening due to the reduction of the distance between adjacent flakes. The model derived herein, was consistent with the experimental data and the reasons why the superlative properties of graphene cannot be fully utilized in this type of composites, were discussed in depth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available