4.7 Article

A novel understanding of the normalized fatigue delamination model for composite multidirectional laminates

Journal

COMPOSITE STRUCTURES
Volume 229, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2019.111395

Keywords

Composite laminates; Fatigue; Delamination growth; Fiber bridging

Funding

  1. National Natural Science Foundation of China [11902054]
  2. Chongqing Natural Science Foundation [cstc2018jcyjAX0235]
  3. Fundamental Research Funds for the Central Universities [2019CDXYHK0001]
  4. Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process of Shenyang Aerospace University [SHSYS2018001]
  5. German Academic Exchange Service (DAAD)

Ask authors/readers for more resources

Normalized fatigue delamination models have been widely applied by researchers in the characterization of the fatigue delamination behavior of composite laminates. However, the inherent mechanism of this normalization method has not been explored. This study aims to present a physical understanding on the normalized fatigue delamination model from a viewpoint of energy. The fatigue delamination behavior is considered to be governed by the driving force and delamination resistance, and based on this principle the physical mechanism of the fatigue delamination is studied. A new physics-based normalized fatigue delamination model is proposed in this paper. In order to experimentally validate the proposed fatigue delamination model, mode I fatigue delamination tests are performed on double cantilever beam specimens to obtain the experimental data with different amounts of the fiber bridging. The results show that the normalized model is suitable to accurately characterize the fatigue delamination behavior of the composite laminates by using a single master curve. The master curve is finally employed as a standard approach to predict the fatigue results. Good agreement between the predicted and the experimental results is achieved, therefore it approves the applicability of the proposed fatigue delamination model in characterizing the fatigue delamination growth behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available