4.7 Article

CD19-targeted, Raman tagged gold nanourchins as theranostic agents against acute lymphoblastic leukemia

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 184, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2019.110478

Keywords

Acute lymphoblastic leukemia; Gold nanourchins; CD19; Specific targeting; Theranostic agent

Funding

  1. [PN-II-RU-TE-2014-4-2426]

Ask authors/readers for more resources

The incidence of Acute Lymphoblastic Leukemia (ALL) is increasing globally, and it is being clinically addressed by chemotherapy, followed by immunotherapy and stem cell transplantation, all with potential life-threatening toxicities. In the need for more effective therapeutics, newly developed disease-targeted nanocompounds can thus hold real potential. In this paper, we propose a novel nanoparticle-based immunotherapeutic agent against ALL, consisting of antiCD19 antibody-conjugated, polyethylene glycol (PEG)-biocompatibilized, and Nile Blue (NB) Raman reporter-tagged gold nanoparticles of urchin-like shape (GNUs), that have a plasmonic response in the Near Infrared (NIR) spectral range. Transmission electron microscopy (TEM) images of particle-incubated CD19-positive (CD19(+)) CCRF-SB cells show that the antiCD19-PEG-NB-GNU nanocomplex is able to recognize the CD19 B-cell-specific antigen, which is a prerequisite for targeted therapy. The therapeutic effect of the particles is confirmed by cell counting, combined with cell cycle analysis by flow cytometry and MTS assay, which additionally offer insights into their mechanisms of action. Specifically, antiCD19-PEG-NB-GNUs proved superior cytotoxic effect against CCRF-SB cells when compared with the free antibody, by reducing the overall viability below 18% after 7 days treatment at a particle-bound antibody concentration of 0.17 ng/mu l. Moreover, by combining their remarkable plasmonic properties with the possibility of Raman tagging, the proposed nano particles can also serve as spectroscopic imaging agents inside living cells, which validates their theranostic potential in the field of hematological oncology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available