4.8 Article

Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead

Journal

BIORESOURCE TECHNOLOGY
Volume 193, Issue -, Pages 243-249

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2015.06.102

Keywords

Arsenic; Chitosan; Granular; Sorption; Groundwater

Funding

  1. National Natural Science Foundation of China [51478457, 51178453]

Ask authors/readers for more resources

A novel sorbent of Fe-Mn binary oxide impregnated chitosan bead (FMCB) was fabricated through impregnating Fe-Mn binary oxide into chitosan matrix. The FMCB is sphere-like with a diameter of 1.6-1.8 mm, which is effective for both As(V) and As(III) sorption. The maximal sorption capacities are 39.1 and 54.2 mg/g, respectively, outperforming most of reported granular sorbents. The arsenic was mainly removed by adsorbing onto the Fe-Mn oxide component. The coexisting SO42-, HCO3- and SiO32- have no great influence on arsenic sorption, whereas, the HPO42- shows negative effects. The arsenic-loaded FMCB could be effectively regenerated using NaOH solution and repeatedly used. In column tests, about 1500 and 3200 bed volumes of simulated groundwater containing 233 mu g/L As(V) and As(III) were respectively treated before breakthrough. These results demonstrate the superiority of the FMCB in removing As(V) and As(III), indicating that it is a promising candidate for arsenic removal from real drinking water. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available