4.7 Article

Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change

Journal

COASTAL ENGINEERING
Volume 158, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.coastaleng.2020.103673

Keywords

Large-scale nourishment; Model uncertainty; Wave climate variability; Generalized Likelihood Uncertainty Estimation (GLUE); Coastline modeling; Sensitivity analysis

Funding

  1. TKI Deltatechnology
  2. Dutch government Rijkswaterstaat
  3. water board Hoogheemraadschap Hollands Noorderkwartier
  4. contractors Van Oord and Boskalis
  5. Svasek Hydraulics
  6. NWO Domain Applied and Engineering Sciences [15058]

Ask authors/readers for more resources

Sand nourishments are increasingly applied as adaptive coastal protection measures. Predictions of the evolution of these nourishments and their impact on the surrounding coastline contain many uncertainties. The sources that add to this uncertainty can be delineated between intrinsic and epistemic uncertainty, i.e. inevitably in the system or related to knowledge limitations. Effects of intrinsic uncertainty (e.g. due to wave climate variability) on coastal evolution can be significant. In studying these effects, it has often been assumed that intrinsic uncertainty is dominant over epistemic uncertainty (e.g. introduced by the model), yet the magnitude of both contributions have not been explicitly quantified to assess the validity of this assumption. This paper examines the relative importance of intrinsic and epistemic uncertainty in coastline modeling of a large-scale nourishment. It uses a probabilistic framework in which sediment transport is considered to be a function of random wave forcing (intrinsic) and model (epistemic) uncertainty, calculating transport using a one-line model. The test case for this analysis is the mega-nourishment, the Sand Engine, located in the Netherlands. The applied wave climate variability is obtained from long term wave observations, whereas model uncertainty is quantified using the Generalized Likelihood Uncertainty Estimation (GLUE) method relying on monthly observations. We find that the confidence intervals on predicted volume losses increase substantially when including both intrinsic and epistemic sources of uncertainty. A global sensitivity analysis shows that ignoring model uncertainty would underestimate the variance by at least 50% after a 2.5-year simulation period for the Sand Engine, hence producing significant overconfidence in the results. These findings imply that for coastal modeling purposes a dual approach should be considered, evaluating both epistemic and intrinsic uncertainties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available