4.5 Article

Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study

Journal

CHINESE PHYSICS B
Volume 29, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1674-1056/ab7b54

Keywords

Si; fluoroethylene carbonate; solid electrolyte interphase; atomic force microscopy force spectroscopy

Funding

  1. State Grid Technology Project, China [DG71-17-010]

Ask authors/readers for more resources

Silicon is an important high capacity anode material for the next generation Li-ion batteries. The electrochemical performances of the Si anode are influenced strongly by the properties of the solid electrolyte interphase (SEI). It is well known that the addition of flouroethylene carbonate (FEC) in the carbonate electrolyte is helpful to improve the cyclic performance of the Si anode. The possible origin is suggested to relate to the modification of the SEI. However, detailed information is still absent. In this work, the structural and mechanical properties of the SEI on Si thin film anode in the ethylene-carbonate-based (EC-based) and FEC-based electrolytes at different discharging and charging states have been investigated using a scanning atomic force microscopy force spectroscopy (AFMFS) method. Single-layered, double-layered, and multi-layered SEI structures with various Young's moduli have been visualized three dimensionally at nanoscale based on the hundreds of force curves in certain scanned area. The coverage of the SEI can be obtained quantitatively from the two-dimensional (2D) project plots. The related analysis indicates that more soft SEI layers are covered on the Si anode, and this could explain the benefits of the FEC additive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available