4.7 Article

N-doped honeycomb-like porous carbon towards high-performance supercapacitor

Journal

CHINESE CHEMICAL LETTERS
Volume 31, Issue 7, Pages 1986-1990

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.02.020

Keywords

Grape; Honeycomb-like; Porous carbon; Activation; Supercapacitor

Funding

  1. National Natural Science Foundation of China [51803093, 51903123]
  2. Natural Science Foundation of Jiangsu Province [BK20180770, BK20190760]
  3. Open Project of Chemistry Department of Qingdao University of Science and Technology [QUSTHX201921]

Ask authors/readers for more resources

Biomass-derived porous carbon with developed pore structure is critical to achieving high performance electrode materials. In this work, we report a grape-based honeycomb-like porous carbon (GHPC) prepared by KOH activation and carbonization, followed by N-doping (NGHPC). The obtained NGHPC exhibits a unique honeycomb-like structure with hierarchically interconnected micro/mesopores, and high specific surface area of 1268 m(2)/g. As a supercapacitor electrode, the NGPHC electrode exhibits a remarkable specific capacitance of 275 F/g at 0.5 A/g in a three-electrode cell. Moreover, the NGHPC//NGHPC symmetric supercapacitor displays a high energy density of 12.6 Wh/kg, and excellent cycling stability of approximately 95.2% capacitance retention after 5000 cycles at 5 A/g. The excellent electrochemical performance of NGHPC is ascribed to its high specific surface area, honeycomb-like structure and high-content of pyrodinic-N (36.29%). It is believed that grape-based carbon materials show great potential as advanced electrode materials for supercapacitors. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available