4.7 Article

Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel)

Journal

CHEMOSPHERE
Volume 242, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125203

Keywords

Evolution; GST; Divergent; New gene; Formation; Organophosphorus resistance

Funding

  1. earmarked fund for the Modern Agroindustry (Citrus) Technology Research System of China [CARS-26]

Ask authors/readers for more resources

Insect glutathione S-transferases (GSTs) are important in insecticide detoxification and Insect-specific GSTs, Epsilon and Delta, have largely expanded in insects. In this study, we functionally expressed and characterized an epsilon class GST gene (BdGSTe8), predominant in the adult Malpighian tubules of Bactrocera dorsalis. This gene may be associated with malathion resistance based on transcriptional studies of resistant and susceptible strains. RNA interference-mediated knockdown of this gene significantly recovered malathion susceptibility in the adults of a malathion-resistant strain, and overexpression of BdGSTe8 enhanced resistance in transgenic Drosophila. Analysis of BdGSTe8 polymorphism showed that several point mutations may be associated with metabolic resistance to malathion. A cytotoxicity assay in Escherichia coli indicated that both of the recombinant BdGSTe8 proteins may play a functional role in protecting cells from toxicity. The allele of BdGSTe8-B conferred higher levels of malathion detoxification capability. Liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that the BdGSTe8-A allele did not metabolize malathion directly. However, the BdGSTe8-B allele was involved in the direct metabolism of malathion, which was caused by a mutation in V128A. Further analysis of the sequence suggests that BdGSTe8 evolved rapidly. It maybe play the role of a backup gene and could become a new gene in the future in order to retain the ability of detoxification of malathion, which was driven by positive selection. These results suggest that divergent molecular evolution in BdGSTe8 has played a role in metabolic resistance to malathion in B. dorsalis. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available