4.7 Article

The role of a newly isolated strain Corynebacterium pollutisoli SPH6 in waste activated sludge alkaline fermentation

Journal

CHEMOSPHERE
Volume 241, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125072

Keywords

Corynebacterium pollutisoli SPH6; Waste activated sludge; Alkaline fermentation; Volatile fatty acids; Microbial community

Funding

  1. Chengdu Science and Technology Bureau Project [2016-HM01-00246-SF]
  2. Project of Department of Science and Technology of Sichuan Province [2017SZ0180]
  3. Youth Project of National Natural Science Foundation of China [41601275]

Ask authors/readers for more resources

Alkaline fermentation has been considered as one of the efficient methods for waste activated sludge (WAS) treatment, but usually limited by microbial fermentation activities under extreme pH condition. One newly isolated alkali-tolerant strain Corynebacterium pollutisoli SPH6 was used to assess its potential role and effect on WAS alkaline fermentation process. Results from response surface method showed that the optimal organic nitrogen degradation rate by SPH6 was obtained under temperature of 35 degrees C, initial pH of 10, shaking speed of 80 rpm, inoculation ratio of 6.5%. Batch-scale experiments demonstrated that, compared with the control group, the inoculation of SPH6 finally achieved higher productions with 13.4% of carbohydrates, 27.1% of protein and 25.4% of total volatile fatty acids (VFAs), and more predominant functional bacteria characterized by high-throughput sequencing, such as genera Acinetobacter in phylum Proteobacteria, Tissierella and Acetoanaerobium in phylum Firmicutes. The strain SPH6 might play a vital role in maintaining and facilitating the growth and diversity of functional bacteria in WAS alkaline fermentation process. It has implied promising practical application of the present strain in enhancing WAS reduction and utilization. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available