4.7 Article

A novel start-up strategy for mixotrophic denitrification biofilters by rhamnolipid and its performance on denitrification of low C/N wastewater

Journal

CHEMOSPHERE
Volume 239, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124726

Keywords

Mixotrophic denitrification biofilters (mDNBFs); Start-up; Rhamnolipid; Low C/N wastewater

Funding

  1. National Natural Science Foundation of China [51878336, 51608254]
  2. National Science and Technology Major Project [2017ZX07204001]
  3. Jiangsu Science and Technology Project [BE2018632, BE2017632]

Ask authors/readers for more resources

A novel start-up strategy for sulfur-based mixotrophic denitrification biofilters (mDNBFs) by rhamnolipid was investigated for the first time. Rhamnolipid with gradient concentrations (0-120 mg/L) was added into five lab-scale mDNBFs. Results showed that rhamnolipid could promote biomass yield and nitrogen removal rate (NRR) by 71.7% and 68.7%, respectively, while its effect on EPS and adhesion force was concentration-dependent. The spatial distribution characteristics of microbial communities demonstrated the enrichment of main heterotrophic denitrifying bacteria outcompeted that of the autotrophs, with a more pronounced difference in high concentration rhamnolipid-treated mDNBFs. Furthermore, highest abundance of napA, narG, nirK and nosZ genes was observed in 80 mg/L rhamnolipid-treated mDNBF. Interfacial processes including solubilizing effect and hydration repulse and variations of organics were discussed to explicate the underlying mechanism. The study enlightened that an appropriate concentration (similar to 80 mg/L) of rhamnolipid may be a good solution for accelerating biofilm formation and enriching denitrifying bacteria to promote denitrification performance of mDNBFs treating low C/N wastewater. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available