4.7 Article

Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria

Journal

CHEMOSPHERE
Volume 238, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124655

Keywords

Sulfate reducing bacteria; Reservoir souring; Biosurfactant producing nitrate reducing bacteria; Sulfide removal

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada
  2. Canada Foundation for Innovation (CFI)

Ask authors/readers for more resources

The effectiveness of nitrate-mediated souring control highly depends on the interactions of sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). Biosurfactants produced by natural NRB are promising bio-agents for enhancing NRB competence towards SRB. However, the function of NRB-produced biosurfactants in NRB-SRB interactions remains unexplored due to the rarely successful isolation of natural biosurfactant-producing NRB. Hereby, biosurfactant-aided inhibitory control of SRB strain Desulfomicrobium escambiense ATCC 51164 by biosurfactant-producing NRB strain Pseudomonas stutzeri CX3, reported in our previous work, was investigated. Under non-sour conditions, insufficient nitrate injection resulted in limited SRB inhibition. Phospholipid fatty acid (PLFA) biomarkers traced the overall bacterial responses. Compositional PLFA patterns revealed biosurfactant addition benefitted both SRB and NRB towards stressful conditions. Under sour conditions, nitrite oxidation of sulfide proved to be the primary mechanism for sulfide removal. The subsequent elevation of redox potential and pH inhibited SRB activities. NRB-produced biosurfactants significantly enhanced SRB inhibition by NRB through more efficient sulfide removal and effective duration of nitrate in the microcosms. Biosurfactants specially produced by the NRB strain are for the first time reported to significantly strengthen SRB inhibition by NRB via reduced nitrate usage and prolonged effective duration of nitrate, which has encouraging potential in nitrate-dependent souring control. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available