4.6 Article

Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model

Journal

BONE
Volume 83, Issue -, Pages 127-140

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2015.10.017

Keywords

Lycopene; Bone mass and microarchitecture; Bone turnover; Osteoclastogenesis; Oxidative stress; Ovariectomy

Funding

  1. Ministry of Education, Jeddah, Saudi Arabia [CEOR/001-08, CEOR/004-08]
  2. National Plan for Science, Technology and Innovation (MAARIFAH) - King Abdulaziz City for Science and Technology (KACST), The Kingdom of Saudi Arabia [11-BIO1552-03]

Ask authors/readers for more resources

Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n = 264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2 mu g/kg body weight per day), for 12 weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. (c) 2015 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available