4.6 Article

Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles

Journal

CHEMICAL ENGINEERING RESEARCH & DESIGN
Volume 153, Issue -, Pages 789-805

Publisher

ELSEVIER
DOI: 10.1016/j.cherd.2019.11.006

Keywords

Matrimid; Nickel oxide nanoparticles; Electron donor-acceptor (EDA); Gas separation; Solution-diffusion mechanism

Ask authors/readers for more resources

Here, we report for the first time the fabrication of a glassy polymer/nickel oxide hybrid membrane as a gas separation membrane. A PI (Matrimid) is used as a continuous phase, and nickel oxide nanoparticles (NiO) were utilized as a dispersed phase. The structure of mixed matrix (MMMs) and pure Matrimid membranes are investigated by employing various characterization techniques including scanning electron microscopy (SEM), Fourier transforms infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and tensile stress-strain to characterize the NiO nanoparticles. The effect of NiO nanoparticles content (0-5 wt%) on gas permeability of pure CO2, CH4, O-2, and N-2 gases at different operating temperatures (24-40 degrees C) and feed pressures (1-5 bar) were surveyed. The results revealed that the CO2 permeability almost did not change and CO2/CH4 selectivity of PI was enhanced with low-level loadings of NiO while the gas permeability of N-2, CH4, and O-2 was reduced. Our results indicated that since NiO nanoparticles have high interaction with CO2 as Lewis pairs, they have high potential to improve the gas permeability properties of polymer-based membranes. This approach allows predicting the gas transport properties, structure/solubility quantitative relationships of different gases, especially CO2 through the MMMs system. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available