4.6 Review

Determinants of bone strength and quality in diabetes mellitus in humans

Journal

BONE
Volume 82, Issue -, Pages 28-34

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2015.07.027

Keywords

Diabetes; Bone strength; Bone quality; HRpQCT

Funding

  1. NIH [P01AG004875, R01AR02 7065, UL1TR000135]
  2. Mayo Kogod Center on Aging
  3. NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES [UL1TR000135, TL1TR000137] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R01AR027065] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE ON AGING [P01AG004875] Funding Source: NIH RePORTER

Ask authors/readers for more resources

There is growing evidence that the higher fracture rate observed in patients with type 2 diabetes mellitus (T2DM) is associated with normal, or even increased, areal bone mineral density (aBMD) by DXA. This has led to the hypothesis that patients with T2DM may have abnormalities in bone microarchitecture and/or material composition - i.e., key determinants of bone quality. Consistent with this hypothesis, several studies using high-resolution peripheral quantitative computed tomography (HRpQCT) have demonstrated preserved indices of trabecular microarchitecture but increased cortical porosity in T2DM patients. In addition, a recent study using a novel in vivo microindentation device found an impairment in a measure of bone material properties (bone material strength index, BMSi) in postmenopausal women with longstanding T2DM; notably, the reduction in BMSi was associated with chronic glycemic control, suggesting that the skeleton should be included as another target organ subject to diabetic complications. The underlying pathogenesis of skeletal fragility in T2DM remains to be defined, although high levels of advanced glycation endproducts (AGEs) may play a role. In addition, T2DM is associated with reduced bone turnover, perhaps with an imbalance between bone resorption and bone formation. Although several studies have found increased serum sclerostin levels in patients with T2DM, the role of these increased levels in mediating the observed increases in cortical porosity or reduction in BMSi remains to be defined. Thus, although bone quality appears to be impaired in T2DM, the pathogenesis of these abnormalities and their relationship to the increased fracture risk observed in these patients needs further study. (C) 2015 Elsevier Inc All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available