4.7 Article

The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach

Journal

CHAOS SOLITONS & FRACTALS
Volume 132, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2019.109548

Keywords

Social dilemma; Vaccination game; SIR model; Information spreading; Heterogeneous network

Ask authors/readers for more resources

A modified susceptible-vaccinated-infected-recovered (SIR/V) with unaware-aware (UA) epidemic model in heterogeneous networks is presented to study the effect of information spreading in the spatial structure of the vaccination game on epidemic dynamics. Two layers SIR/V epidemic model is considered to elucidate information spreading, where the fraction of susceptible, vaccinated and infected individuals are parted as unaware and aware state as each susceptible and vaccinated persons are allied with their infected neighbors by a spatial structure, say, an underlying network. The context deduces epidemic vaccination game with awareness influence dynamics in one single season followed by a strategy update process that refer an individual to take imperfect vaccination or not. We considered two different strategy updating rules: individual based risk assessment (IB-RA) and strategy-based risk assessment (SB-RA) to explore how different underlying network topologies, say, random graph and scale free networks, subsequently giving impact on the final epidemic size, vaccination coverage and average social payoff through the effect of information spreading on epidemic. Thus, it can be seen that, awareness can enhance the epidemic threshold effectiveness and lessen the spreading of infection in a scale free network other than random graph and homogeneous network. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available