4.7 Review

Advancements in MXene-Polymer composites for various biomedical applications

Journal

CERAMICS INTERNATIONAL
Volume 46, Issue 7, Pages 8522-8535

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2019.12.257

Keywords

Biomaterials; MXenes; Polymer; Composites; Biomedical

Ask authors/readers for more resources

2D materials have brought about significant technological advancements in the field of biomaterials. 'MXene', a ceramic-based 2D nanomaterial, is comprised of transition metal carbides, nitrides, and carbonitrides having a planar structure educed from a ceramic 'MAX' phase by etching out 'A' from it, has emerged to surpass drawbacks of conventional biomaterials. In spite of their substantial properties like large surface area, biocompatibility, hydrophilicity, metallic conductivity, and size tunability, the use of MXene is restricted in biomedical applications due of its poor stability in physiological environments, lack of sustained and controlled drug release, and low biodegradability, and these limitations lead to the notion of adopting MXene/Polymer nanocomposites. The availability of functional groups on the surface of MXenes enables polymer functionalization. These polymers functionalized MXene nanocomposites exhibit high photothermal conversion efficiency, selectivity, and stimuli-responsiveness towards malignant cells, electron sensitivity, higher antibacterial properties, and the like. This review emphasizes the innovative exemplars of polymer functionalized MXene composites for the burgeoning biomedical applications, which include controlled and sustained drug delivery, antibacterial activity, photothermal cancer therapy, unambiguous biosensing, contrast-enhanced diagnostic imaging, and bone regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available