4.7 Article

Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination

Journal

CEMENT AND CONCRETE RESEARCH
Volume 129, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2019.105959

Keywords

composite cement blends; pore structure; tortuosity; chloride resistance; microstructure; capillary porosity; densification

Funding

  1. Swiss Agency for Development and Cooperation (SDC) [7F-08527.02.01]
  2. Government of India

Ask authors/readers for more resources

This paper discusses the role of physical structure alterations on three binder types: plain portland cement, fly ash-based binder and calcined clay-limestone binder. The kinetics of physical structure development and the relevance in transport properties were distinguished using an interlinked parameter in concrete and paste. A systematic experimental investigation was carried out on a range of critical parameters such as strength development, resistivity development, transport characteristics and the time-dependent change in transport parameter. The role of microstructure in terms of the chemical composition of C-A-S-H and its physical states in the different systems is identified as the critical factor governing the development of microstructure. Chloride resistance was assessed by chloride migration experiments for a period of 4 years. The durability behaviours of the concrete with various binder were generalised using pore network parameters such as formation factor and tortuosity. A sensitivity analysis was used to dissect the contribution of the pore solution dilution and pore connectivity to the change in the pore network parameter. Based on the rise in macroscopic physical characteristics (i.e., formation factor here), a two-fold structure development mechanism to conceptualise microstructural evolution in cement composites is presented. Initially, capillary pore space reduces to a critical size range (i.e., 10-30 nm), which is followed by the densification of the physical state of the microstructure. At the point of densification, the pores become largely disconnected which leads to a dramatic increase in the formation factor. The binding matrix in calcined clay concretes reaches the critical pore size at an early age which leads to early densification of capillary pore space region in comparison to fly ash concretes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available