4.7 Article

Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease

Journal

CELL STEM CELL
Volume 26, Issue 4, Pages 511-+

Publisher

CELL PRESS
DOI: 10.1016/j.stem.2020.01.010

Keywords

-

Funding

  1. National Health and Medical Research Council Australia (NHMRC) Senior Research Fellowship
  2. Australian Postgraduate Award
  3. NHMRC Australia [APP1102704]
  4. Stem Cells Australia
  5. Swedish Research Council [2012-2586]

Ask authors/readers for more resources

Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available