4.6 Article

The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy

Journal

CELL BIOLOGY AND TOXICOLOGY
Volume 36, Issue 5, Pages 437-457

Publisher

SPRINGER
DOI: 10.1007/s10565-020-09514-8

Keywords

Nasopharyngeal carcinoma; Pyroptosis; Caspase-1; GSDMD; Taxol resistance

Funding

  1. National Natural Science Foundation of China [81702706]

Ask authors/readers for more resources

Taxol has been widely used as a first-line chemotherapeutic agent for the treatment of advanced nasopharyngeal carcinoma (NPC). However, acquired drug resistance has caused great difficulties in clinical treatment. Pyroptosis is a newly discovered programmed cell death pathway, and Caspase-1 and gasdermin D (GSDMD) play key roles in driving canonical pyroptosis. Increasing evidence suggests that pyroptosis is associated with the development of cancer; however, the function and mechanism of pyroptosis in NPC remain obscure. In this study, we observed that Taxol treatment caused pyroptotic cell death, along with activation of Caspase-1 and maturation of IL-1 beta, as well as cleavage of GSDMD, which is the canonical pyroptosis executor. Furthermore, Taxol-induced pyroptotic cell death could be suppressed by Caspase-1 inhibitor (Z-YVAD-FMK) and GSDMD knockout. Moreover, NPC parental cells demonstrated higher levels of pyroptosis than Taxol-resistant cells, and pyroptosis mediated by Caspase-1/GSDMD suppression induced by a Caspase-1 inhibitor and GSDMD knockout could induce a Taxol-resistant phenotype in vitro and in vivo. By transfecting an siRNA targeting Beclin-1 into NPC Taxol-resistant cells, we discovered that autophagy could negatively regulate pyroptosis by inhibiting Caspase-1/GSDMD activation. Taken together, our results indicated that Caspase-1/GSDMD mediated Taxol-induced pyroptosis and a Taxol-resistant phenotype in NPC cell lines, which may be regulated by autophagy. Thus, we provide novel insight into the mechanisms of Taxol-induced cell death and a promising approach to improve the therapeutic outcomes of patients with advanced NPC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available