4.8 Article

Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance

Journal

CARBON
Volume 158, Issue -, Pages 45-54

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.11.075

Keywords

-

Funding

  1. National Natural Science Foundation of China [51773170]
  2. Innovation Fund of Xi'an Polytechnic University [107020414]

Ask authors/readers for more resources

Carbon foams are obtained by pyrolysis of conventional polymeric porous materials usually show poor mechanical properties. The preparation of lightweight carbon foams with high mechanical strength and adjustable three-dimensional architecture still remains a huge challenge. This work reports an efficient approach for fabricating rigid carbon foams via carbonization of thermosetting polyimide foam. Benefiting from the cross-linked networks, the prepared carbon foams present excellent thermal and dimensional stability with low shrinkage of similar to 47% after carbonized at 1500 degrees C. Moreover, the compressive strength of the carbon foams after carbonized at 1200 degrees C (CF-1200) reaches 0.25 MPa at 10% strains with the density of 0.091 g cm(-3). Notably, the CF-1200 shows superior electromagnetic interference (EMI) shielding effectiveness and specific EMI shielding effectiveness of -54 dB and 593.4 dB cm(3)/g respectively at 10 GHz with the thickness of 2.0 mm. In particular, the bulk density, mechanical properties, electrical conductivity of carbon foams can be adjusted by varying the characteristics of polyimide foam accordingly. As the result, these lightweight and stiff carbon foams with such superior EMI SE have great potential applications as structural-functional integrated materials in the aerospace and wireless telecommunication fields. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available