4.7 Article

A fully degradable and photocrosslinked polysaccharide-polyphosphate hydrogel for tissue engineering

Journal

CARBOHYDRATE POLYMERS
Volume 225, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2019.115257

Keywords

Polyphosphate; Hydrogel; Full-degradability; Photocrosslink; Mesenchymal stem cells

Funding

  1. Key Research and Development Program of Jiangsu Province [BE2017665]
  2. National Key Basic Research Program of China (973 Program) [2014CB965003]
  3. National Natural Science Foundation of China [21774081]
  4. Natural Science Foundation of Jiangsu Province [BK20171212]

Ask authors/readers for more resources

Extracellular matrix degradability meditates cell behaviors and gains increasing importance in the development of implantation materials for tissue engineering. Here, we developed a fully biodegradable hydrogel combining the unique features of synthetic polyphosphate polymer and natural polysaccharide polymer. Polyphosphate copolymer poly(butynyl phospholane)-random-poly(ethylethylene phosphate) (PBYP-r-PEEP) bearing pendent alkynes was synthesized through a facile one-pot reaction. Subsequently, thiol-yne click reaction was employed to fabricate the fully degradable and photocrosslinked hydrogel by mixing PBYP-r-PEEP with thiolated biodegradable hyaluronic acid (HA-SH). The generated HA/PPE hydrogels show viscoelastic properties and enzymatic biodegradability, supporting the growth of human mesenchymal stem cells (hMSCs). HA/PPE hydrogel is permissive to the covalent conjugation of cell-adhesive peptide RGD, which can enhance the cell-cell interactions. This HA/PPE hydrogel system provides a fully biodegradable platform that can support hMSCs growth and facilitate the formation of cell clustering, expanding the range of fully degradable materials for tissue engineering and regenerative medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available