4.6 Article

Upregulation of AKR1C1 in mesenchymal stromal cells promotes the survival of acute myeloid leukaemia cells

Journal

BRITISH JOURNAL OF HAEMATOLOGY
Volume 189, Issue 4, Pages 694-706

Publisher

WILEY
DOI: 10.1111/bjh.16253

Keywords

mesenchymal stromal cells; acute myeloid leukaemia; survival; cytokines

Categories

Funding

  1. Chinese Academy of Medical Sciences Initiative for Innovative Medicine [CAMS-I2M-2016-1-017]
  2. National Natural Science Foundation of China [81170510]

Ask authors/readers for more resources

The leukaemic bone marrow microenvironment, comprising abnormal mesenchymal stromal cells (MSCs), is responsible for the poor prognosis of acute myeloid leukaemia (AML). Therefore, it is essential to determine the mechanisms underlying the supportive role of MSCs in the survival of leukaemia cells. Through in silico analyses, we identified a total of 271 aberrantly expressed genes in the MSCs derived from acute myeloid leukemia (AML) patients that were associated with adipogenic differentiation, of which aldo-keto reductase 1C1 (AKR1C1) was significantly upregulated in the AML-MSCs. Knockdown of AKR1C1 in the MSCs suppressed adipogenesis and promoted osteogenesis, and inhibited the growth of co-cultured AML cell lines compared to the situation in wild- type AML-derived MSCs. Introduction of recombinant human AKR1C1 in the MSCs partially alleviated the effects of AKR1C1 knockdown. In addition, the absence of AKR1C1 reduced secretion of cytokines such as MCP-1, IL-6 and G-CSF from the MSCs, along with inactivation of STAT3 and ERK1/2 in the co-cultured AML cells. AKR1C1 is an essential factor driving the adipogenic differentiation of leukaemic MSCs and mediates its pro-survival effects on AML cells by promoting cytokine secretion and activating the downstream pathways in the AML cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available