4.5 Article

HopPER: an adaptive model for probability estimation of influenza reassortment through host prediction

Journal

BMC MEDICAL GENOMICS
Volume 13, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12920-019-0656-7

Keywords

Influenza; Reassortment estimation; Host tropism; Random forest

Funding

  1. AcRF Tier 2 grant, Ministry of Education, Singapore [MOE2014-T2-2-023]

Ask authors/readers for more resources

Background Influenza reassortment, a mechanism where influenza viruses exchange their RNA segments by co-infecting a single cell, has been implicated in several major pandemics since 19th century. Owing to the significant impact on public health and social stability, great attention has been received on the identification of influenza reassortment. Methods We proposed a novel computational method named HopPER (Host-prediction-based Probability Estimation of Reassortment), that sturdily estimates reassortment probabilities through host tropism prediction using 147 new features generated from seven physicochemical properties of amino acids. We conducted the experiments on a range of real and synthetic datasets and compared HopPER with several state-of-the-art methods. Results It is shown that 280 out of 318 candidate reassortants have been successfully identified. Additionally, not only can HopPER be applied to complete genomes but its effectiveness on incomplete genomes is also demonstrated. The analysis of evolutionary success of avian, human and swine viruses generated through reassortment across different years using HopPER further revealed the reassortment history of the influenza viruses. Conclusions Our study presents a novel method for the prediction of influenza reassortment. We hope this method could facilitate rapid reassortment detection and provide novel insights into the evolutionary patterns of influenza viruses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available