4.5 Article

Genome-wide analysis reveals the association between alternative splicing and DNA methylation across human solid tumors

Journal

BMC MEDICAL GENOMICS
Volume 13, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12920-019-0654-9

Keywords

Alternative splicing; DNA methylation; Exon boundaries; Cancers; Association

Ask authors/readers for more resources

Background Dysregulation of alternative splicing (AS) is a critical signature of cancer. However, the regulatory mechanisms of cancer-specific AS events, especially the impact of DNA methylation, are poorly understood. Methods By using The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA data for ten solid tumor types, association analysis was performed to characterize the potential link between cancer-specific AS and DNA methylation. Functional and pathway enrichment analyses were performed, and the protein-protein interaction (PPI) network was constructed with the String website. The prognostic analysis was carried out with multivariate Cox regressions models. Results 15,818 AS events in 3955 annotated genes were identified across ten solid tumor types. The different DNA methylation patterns between tumor and normal tissues at the corresponding alternative spliced exon boundaries were shown, and 51.3% of CpG sites (CpGs) revealed hypomethylated in tumors. Notably, 607 CpGs were found to be highly correlated with 369 cancer-specific AS events after permutation tests. Among them, the hypomethylated CpGs account for 52.7%, and the number of down-regulated exons was 173. Furthermore, we found 38 AS events in 35 genes could serve as new molecular biomarkers to predict patient survival. Conclusions Our study described the relationship between DNA methylation and AS events across ten human solid tumor types and provided new insights into intragenic DNA methylation and exon usage during the AS process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available