4.6 Article

An integrated biosensor platform for extraction and detection of nucleic acids

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 117, Issue 5, Pages 1554-1561

Publisher

WILEY
DOI: 10.1002/bit.27290

Keywords

biosensors; extraction; microfluidics; nucleic acids; qRT-PCR; silicon chip

Funding

  1. MIUR [CTN01_00177_817708]

Ask authors/readers for more resources

The development of portable systems for analysis of nucleic acids (NAs) is crucial for the evolution of biosensing in the context of future healthcare technologies. The integration of NA extraction, purification, and detection modules, properly actuated by microfluidics technologies, is a key point for the development of portable diagnostic systems. In this paper, we describe an integrated biosensor platform based on a silicon-plastic hybrid lab-on-disk technology capable of managing NA extraction, purification, and detection processes in an integrated format. The sample preparation process is performed by solid-phase extraction technology using magnetic beads on a plastic disk, while detection is done through quantitative real-time polymerase chain reaction (qRT-PCR) on a miniaturized silicon device. The movement of sample and reagents is actuated by a centrifugal force induced by a disk actuator instrument. The assessment of the NA extraction and detection performance has been carried out by using hepatitis B virus (HBV) DNA genome as a biological target. The quantification of the qRT-PCR chip in the hybrid disk showed an improvement in sensitivity with respect to the qRT-PCR commercial platforms, which means an optimization of time and cost. Limit of detection and limit of quantification values of about 8 cps/reaction and 26 cps/reaction, respectively, were found by using analytical samples (synthetic clone), while the results with real samples (serum with spiked HBV genome) indicate that the system performs as well as the standard methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available