4.8 Article

Enhanced treatment performance of phenol wastewater and membrane antifouling by biochar-assisted EMBR

Journal

BIORESOURCE TECHNOLOGY
Volume 306, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.123147

Keywords

BC-assisted EMBR; Phenol degradation; Membrane fouling; Extracellular polymeric substances; Microbial community

Funding

  1. National Natural Science Foundation of China [51508259]
  2. Dalian Science and Technology Star Project Support Plan [2018RQ31]

Ask authors/readers for more resources

Biochar-assisted EMBR (BC-assisted EMBR) was built to enhance treatment performance of phenol wastewater and membrane antifouling. BC-assisted EMBR significantly increased phenol degradation efficiency, owing to combined effects of biodegradation, adsorption and electro-catalytic degradation. Meanwhile, BC-assisted EMBR obviously mitigated membrane fouling. The coupling effect of BC and voltage led to the lower N-acyl-homoserine lactones (AHLs) and bound extracellular polymeric substances (bound EPS) contents around and on membrane surface. Protein (PN)/polysaccharide (PS) in bound EPS was decreased, led to the increase of negative charge and decrease of hydrophobicity of sludge, which abated bound EPS adsorption on membrane surface. Microbial community analyses revealed that the coupling effect of BC and voltage could enrich phenol-degraders (e.g., Comamonas), electron transfer genus (Phaselicystis), and biopolymer-degraders (Phaselicystis and Tepidisphaera) in BC-assisted EMBR and on its membrane surface, while decrease biofilm-former (e.g., Acinetobacter) and bound EPS-producer (Devosia), which was beneficial to promote phenol treatment and mitigate membrane fouling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available