4.8 Article

Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae

Journal

BIORESOURCE TECHNOLOGY
Volume 295, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2019.122259

Keywords

Citrus peel waste; Sugar beet pulp; Pectin; D-galacturonic acid; L-arabinose; Metabolic engineering; CRISPR/Cas9; Saccharomyces cerevisiae; Bioethanol

Funding

  1. Rural Development Administration, Republic of Korea [PJ01279801]

Ask authors/readers for more resources

Pectin-rich biomass has garnered attention as an alternative biomass source. However, some monomers derived from pectin-rich biomass, namely D-galacturonic acid, L-arabinose, and D-xylose, are not fermentable by industrial microorganisms such as Saccharomyces cerevisiae. The purpose of this study is to develop a S. cerevisiae strain capable of fermenting the pectin monomers. Expressions of eight heterologous genes and deletion of two endogenous genes, all of which were successfully completed by Cas9-based in vivo assembly and integration strategy, allowed the consumption of pectin monomers as sole carbon sources. To facilitate the consumption of galacturonic acid, which had the most limitations, the use of a co-substrate was tested using various sugars. As a result, we found that arabinose and xylose allowed simultaneous consumption of galacturonic acid. Based on intracellular metabolite profiling, it was concluded that the five-carbon sugars partially resolve the metabolic bottleneck of galacturonic acid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available