4.7 Review

Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 121, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2019.109635

Keywords

Sulforaphane; Brassicaceae; Breast cancer; nrf2; Apoptosis

Funding

  1. National Natural Science Foundation of China [81503093, 81602166, 81672444]
  2. Southwest Medical University

Ask authors/readers for more resources

Breast cancer is the most common type of cancer among women. Therefore, discovery of new and effective drugs with fewer side effects is necessary to treat it. Sulforaphane (SFN) is an organosulfur compound obtained from cruciferous plants, such as broccoli and mustard, and it has the potential to treat breast cancer. Hence, it is vital to find out how SFN targets certain genes and cellular pathways in treating breast cancer. In this review, molecular targets and cellular pathways of SFN are described. Studies have shown SFN inhibits cell proliferation, causes apoptosis, stops cell cycle and has anti-oxidant activities. Increasing reactive oxygen species (ROS) produces oxidative stress, activates inflammatory transcription factors, and these result in inflammation leading to cancer. Increasing anti-oxidant potential of cells and discovering new targets to reduce ROS creation reduces oxidative stress and it eventually reduces cancer risks. In short, SFN effectively affects histone deacetylases involved in chromatin remodeling, gene expression, and Nrf2 anti-oxidant signaling. This review points to the potential of SFN to treat breast cancer as well as the importance of other new cruciferous compounds, derived from and isolated from mustard, to target Keap1 and Akt, two key regulators of cellular homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available