4.8 Article

Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives

Journal

BIOMATERIALS
Volume 232, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2019.119719

Keywords

Magnesium oxide (MgO); Mussel-inspired adhesion; Citrate; Tissue adhesives; Wound closure

Ask authors/readers for more resources

Tissue adhesives are commonly used in surgeries and regenerative engineering for the repair and regeneration of topical and internal wounds on tissues and organs such as skin, heart, blood vessels, and bone. However, achieving rapid crosslinking, strong wet adhesion and cohesion strengths, and minimal cytotoxicity remains a critical roadblock for clinical translation. Herein, in contrast to harsh and cytotoxic oxidants, magnesium oxide (MgO) particles were found to facilitate rapid crosslinking for injectable citrate-based mussel-inspired tissue bioadhesives synthesized by reacting citric acid, PEG-PPG-PEG diol and dopamine (iC-EPE). Our results confirmed the role of MgO particles as both crosslinkers and composite fillers to concurrently enhance bioadhesive cohesion and adhesion. iC-EPE crosslinked by MgO with/without sodium periodate (PI) exhibit enhanced mechanical strengths (1.0 Mpa < tensile strength <= 4.5 MPa) compared to that of iC-EPE crosslinked only by PI (similar to 0.75 MPa), high adhesion strength (up to 125 kPa, 8 fold that of fibrin glue (similar to 15 kPa)), tunable degradability (full degradation from < 1 week to > 1 month), excellent in vitro and in vivo biocompatibility, encouraging anti-bacterial performance, and favorable wound closure efficacy. Thus, MgO crosslinked bioadhesives possess great potential for a wide range of applications in surgery and regenerative engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available