4.8 Article

Enhancement and orchestration of osteogenesis and angiogenesis by a dual-modular design of growth factors delivery scaffolds and 26SCS decoration

Journal

BIOMATERIALS
Volume 232, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2019.119645

Keywords

Bone regeneration; Mesoporous bioactive glass; 2-N,6-O-sulfated chitosan; Dual-modular; Growth factor

Funding

  1. National Key R&D Program of China [2018YFC1105201]
  2. National Natural Science Foundation of China [31700835, 51872318]
  3. Shenzhen Science and Technology Research Funding [JCYJ20170413161800287, JCYJ20160531171344016, JCYJ20170413162104773]

Ask authors/readers for more resources

Preserving the bioactivity of growth factors (GFs) and mimicking their in vivo supply patterns are challenging in the development of GFs-based bone grafts. In this study, we develop a 2-N, 6-O-sulfated chitosan (26SCS) functionalized dual-modular scaffold composed of mesoporous bioactive glass (MBG) with hierarchical porous structures (module I) and GelMA hydrogel columns (module II) in situ fixed in hollowed channels of the module I, which is capable of realizing differentiated delivery modes for osteogenic rhBMP-2 and angiogenic VEGF. A combinational release profile consisting of a high concentration of VEGF initially followed by a decreasing concentration over time, and a slower/sustainable release of rhBMP-2 is realized by immobilizing rhBMP-2 in module I and embedding VEGF in module II. Systematic in vitro and in vivo studies prove that the two coupled processes of osteogenesis and angiogenesis are well-orchestrated and both enhanced ascribed to the specific GFs delivery modes and 26SCS decoration. 26SCS not only enhances the GFs' bioactivity but also decreases antagonism effects of noggin. This study highlights the importance of differentiating the delivery pattern of different GFs and likely sheds light on the future design of growth factor-based bone grafts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available