4.3 Review

Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbapap.2019.140312

Keywords

Marine xylanases; Industrial applications; Biotechnology; Microorganisms; Bioethanol

Funding

  1. research council of the University of Hormozgan

Ask authors/readers for more resources

Global economic growth often leads to depletion of raw materials and generation of greenhouse gases, as industry manufactures goods at ever increasing levels to keep up with the demand. The currently implemented production processes mostly rely on non-renewable resources, they suffer from high energy consumption, and generate waste that often has a negative environmental impact. Eco-friendly production methods are therefore intensely searched for. Among them, enzyme-based processes are appealing, because of their high substrate and reaction specificity and the relatively mild operation conditions required by these catalysts. In addition, renewable raw materials that allow sustainable production processes are also widely explored. Marine xylanases, which catalyze the hydrolysis of xylan, the major component of lignocellulose, are promising biocatalysts. Since they are produced by microorganisms that thrive in a wide variety of environmental conditions, the enzymes may be active at widely different ranges of pH, temperature, and salt concentrations. These properties are important for their successful application in various industrial processes, such as production of bioethanol, bleaching of paper and pulp, and in the food and feed sector. The present work gives a brief overview of marine sources of xylanases, their classification and features, and of the potential applications of these marine enzymes, especially in sustainable processes in the scope of circular economy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available